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Abstract. We describe the properties of a model which links the ecology of food web structure with the
evolutionary dynamics of speciation and extinction events; the model describes the dynamics of ecological
communities on an evolutionary timescale. Species are defined as sets of characteristic features, and these
features are used to determine interaction scores between species. A realistic population dynamics, which
incorporates these scores, is used to determine the changes in population sizes on ecological time scales
and so determine mean population sizes. We display typical examples of food webs constructed using the
model and comment on the good agreement which is found between the model predictions and data on
real webs.

PACS. 87.23.Kg Dynamics of evolution – 87.23.Cc Population dynamics and ecological pattern formation
– 89.75.Fb Structures and organization in complex systems

1 Introduction

Food webs are the networks of feeding relationships which
occur between species in an ecological community. Early
ecological studies were descriptive and comprised largely
of the natural history of a given habitat. However, at the
end of the nineteenth century, matrices of feeding rela-
tionships in a given community were being constructed,
with rows representing predators and columns represent-
ing prey. These soon gave way to diagrammatic represen-
tations of food webs, an example of which is shown in
Figure 1.

These graphs consist of vertices which represent
species in the food web, with a directed link — that is, a
line with an arrow attached — from vertex A to vertex B,
if species A is eaten by species B. Notice that the direc-
tion of the arrows signifies the flow of resources. This is a
minimal description; it says nothing about the strengths
of the different links — whether, for example, a particu-
lar species which preys on two species derives 99% of its
resources from one, and only 1% from the other. Such in-
formation has been started to be collected in recent years,
but it takes a formidable amount of field work to come up
with such detail.

Much of the theoretical work on predator-prey rela-
tionships has concentrated on the population dynamics of
a few species (typically two) or on the elucidation of vari-
ous effects that might be expected to occur in food webs,
without incorporating them into a model of a multispecies
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Fig. 1. Narragansett Bay food web (After Kremer and Nixon,
1978. A coastal marine ecosystem, Springer-Verlag, Berlin.)

dynamics, as can be seen from a perusal of the standard
textbooks on mathematical ecology [1,2]. The relative rar-
ity of theoretical studies of entire food webs is understand-
able: these are extremely complex entities, which require
extensive computer modelling if any degree of realism is
to be achieved. In fact, comprehensive computer models
of specific food webs, with perhaps hundreds of model pa-
rameters, are not usually a goal of ecologists. The aim
is more a model which describes the generic structure of
ecological systems, focusing on universal attributes, rather
than on specific details of any given food web. The mod-
elling procedure used is more akin to that seen in the
physical sciences, and theoretical physicists have the po-
tential to significantly advance this area of ecology [3].
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The earliest work on the dynamics of multispecies com-
munities dates from the 1970’s and circumvents the need
for computer modelling by making the simplest assump-
tion about the interactions between species: that they are
essentially random [4]. Although this is obviously unreal-
istic for evolved communities, it did provide a number of
stimulating results and showed the need for quantitative
analysis of predator-prey systems. The empirical aspects
of the subject were also developing, and during the 1980’s,
many of the published foods webs were collected together
and various regularities were noticed for the first time.
During roughly the same period ecologists introduced sim-
ple static models in which species were simply represented
as vertices in a graph and directed links between them
were drawn according to some rule. We refer the reader
to a review of empirical and theoretical studies of food
webs [5] for a more detailed discussion of the modelling of
food webs over the last twenty or thirty years.

Food webs provide a number of challenges for the mod-
eller. Foremost among these is that fact that, while the fo-
cus is very often on the population dynamics of the species
in a given web, it is the dynamics responsible for the actual
construction of the web that is in a sense more fundamen-
tal. However these two types of dynamics are intrinsically
interlinked, despite the fact that the time scale appro-
priate for the description of the population dynamics is
typically very much less than that appropriate for food
web construction. It follows that both types of dynamics
have to be studied in unison in order to understand the
formation of the web. This is the basis of our approach.
In the past phenomena on these two times scales were
considered separately: questions regarding the nature of
predator-prey interactions and population dynamics were
considered on the shorter ecological time-scale, compara-
ble to the lifetime of individual organisms, whereas ques-
tions regarding the modification of the food web structure
through the introduction of new species by speciation pro-
cesses were considered on an evolutionary time scale or-
ders of magnitude longer than the lifetime of an organism.
In the model we discuss here, the dynamics of web con-
struction will be affected by the population dynamics, and
vice versa.

In this model we introduce new species purely through
speciation events. We will start from a single species, to-
gether with the environment, and every evolutionary time
step add a new species to the model. The new species may
survive, cause extinctions or go extinct itself. Whether the
population of a particular species grow or decline after a
new addition to the web, is decided by using the equa-
tions describing the population dynamics. The model is
a macroevolutionary model: no reference will be made to
genetics. Of course, speciation ultimately has a genetic ori-
gin, but we are imagining that we observe our ecosystem
on a very coarse time scale, so that species may appear
within a single time step in our model. We may call this
a speciation “event”, but it is in fact modelling the very
complex and (in real time) perhaps lengthy process of spe-
ciation. We will also need to specify how species interact
with each other; our main assumption will be that the

dominant factors will be competition between species for
shared resources, and predator-prey interactions.

The plan of the article is as follows. In Section 2 we
introduce some basic definitions concerning food webs and
list the main quantities used to characterise different webs.
The modelling approach which we adopt is described in
Section 3 and Section 4 contains a summary of some the
main predictions it makes. We end in Section 5 with a
discussion of the relationship of the model to others in this
area, and comment briefly on possible future work. The
presentation here is designed to emphasise the essential
points and to give a overview of the general idea behind
our approach. For those who read this article and wish to
find out more, we refer them to the original papers on the
subject [6–8] and to the review on the modelling of food
webs already mentioned [5].

2 Food webs

In this section we will define the most important terms
that are used in the quantitative description of food webs.
Generally data is given not in terms of species in the bi-
ological sense, but in terms of trophic species; two species
are said to belong to the same trophic species if they
share the same set of predator and prey species. Therefore
trophic species form the nodes in a food web and they are
said to be linked if one of these species preys on the other.
The links are directed: an arrow shows the direction of
the flow of resources from prey to predator. Those species
(in what follows we will frequently refer to trophic species
simply as species) which have no prey are termed basal
species (denoted by B), those that have no predators top
species (T ) and all others with both predators and prey
are called intermediate species (I). Several quantities are
frequently used by ecologists to characterise a food web.
They include the percentage of B, I and T species, the
proportional of links between top and basal species (TB)
(and similarly the proportion of TI, II and IB links), the
ratio of predator to prey species (given by (B+I)/(T +I))
and the total number of links per species.

Ecosystems are reliant on the input of resources from
the external, non-living environment (e.g. minerals, sun-
light). The concept of trophic levels, or simply levels, is
frequently used in the literature. The idea is that basal
species are on the lowest, or first level, with top species
being on the higher levels. But the exact definition of a
level is a matter of convention: for example, species which
feed directly from the environment may also have basal
species as prey. Are these level 1 or level 2 species? Here
we will define the level of a species as the length of the
shortest food chain from the external environment to that
species. Other definitions are possible. For example, all the
possible routes for the species to the environment could
be listed and the most common (the mode) could be des-
ignated as the trophic level [9]. However, since the major-
ity of resources obtained by a species are likely to come
through the shortest route, transfer of resources through
each link of the food chain being relatively inefficient [9,
10], we believe that our definition is more natural. In a



A.J. McKane: Evolving complex food webs 289

recent paper [11] we have investigated the extent of dif-
ferences between this definition, and one which uses the
weighted average of the lengths of the paths from the
species to the environment, which we called the trophic
height. The paths are weighted multiplicatively by the
predator diet fractions (introduced later in the article).
We find that a large majority of species in the model
food webs have a trophic height very close to their trophic
level [11], giving further credence to the usefulness of the
simple definition of trophic level which we have adopted.
Our definitions of trophic level and trophic height corre-
spond to what are denoted respectively as the shortest and
flow based definitions of trophic level in a recent review of
the trophic level concept [12].

The problems of getting reliable data on real food webs
are formidable; we cannot even begin to discuss this com-
plex matter here (see Ref. [5] for an extensive set of refer-
ences). Some broad trends are observable and deviations
from the norm can be understood in some cases. Of course,
there is no claim that the results should be universal. Here
our aim is simply to argue that a considerable amount of
quantitative data exist for food webs and that this puts
stringent constraints on any model of species interaction
of the type that we are proposing here.

3 The model

Our model is a stochastic one: random speciation together
with competition for resources leading to complex adap-
tive dynamics. We begin with a definition of what we mean
by a species. We might define a species by its phenotypic
and behavioural characteristics — the keywords in a de-
scription which could be found in a good encyclopedia.
Two of these keywords might, for instance, appear in the
following descriptive sentence: a nocturnal creature which
is able to run fast. These two keywords would appear in
a list of possible features as numbers 47 and 297, say. So,
in this case, this particular creature would have among its
list of features numbers 47 and 297. More generally, we
construct the species of the model by picking L features
out of a pool of K possible features. There is no attempt
to assign biologically realistic attributes to these features:
they are just integers which run from 1 to K. In our work
we frequently take L = 10 and K = 500 for illustrative
purposes.

Since presumably the success of a species against
a competitor is ultimately dependent on how good its
features are against those of the competitor, we derive
the predator-prey relationship between species from the
“score” of one feature against another. These numbers, de-
noted by mαβ , reflect how useful one feature, α, is against
any other feature, β. The K × K matrix mαβ is anti-
symmetric and is chosen at the beginning of a simulation
run and does not change during that particular run. The
score Sij of one species i against another species j is then
defined as

Sij = max


0,

1
L

∑
α∈i

∑
β∈j

mαβ


 , (1)

where the index α runs over all the features of species i
and β runs over all the features of species j. Thus the
species score against each other is essentially the pairwise
sum of the relevant features score against each other. The
definition (1) ensures that Sij ≥ 0. If Sij > 0 then i is
adapted to prey on j. The external environment is repre-
sented as an additional species 0 which is assigned a set of
L features randomly at the beginning of a run and which
do not change during that run.

This describes the constituents of the model. We now
need an algorithm which defines the dynamics of the set of
species. As this article is designed as a brief introduction
to the model, we will simply outline the essential ideas.
The time development of the model is divided into three
different regimes:

1. A short time regime where the number of species
in the system and the population of these species is con-
stant. After the most recent change in population numbers
which has occurred, predators may wish to change their
foraging strategies to take into account the fact that, for
instance, one of their prey species has become more plen-
tiful. They do this by modifying their relative preference
for a particular prey, which we denote by fij . These are
fractions which give the amount of “effort” (or available
searching time) that i puts into preying on the particular
species j. Clearly

∑
j fij = 1, where the sum is over all

prey species of i. In previous models which included preda-
tor preferences [13], these efforts were constants, but we
believe that adaptive foraging is an important ingredient
in models of food webs, and we will shortly describe how
this is introduced into the present model.

2. An intermediate time regime where the external re-
sources, R, are distributed among the species as a func-
tion of their scores. These resources are then tied up in
the ecosystem as potential “food” in the form of prey
for predator species. Eventually, the set of species settles
down into a steady state, with the resources allocated ac-
cording to the population dynamics equations. Three pa-
rameters, in addition to R, are introduced into the model
at this stage. One is the ecological efficiency λ, which tells
us what fraction of the resources invested in a species can
be passed on to predators. It is clear that such a fac-
tor is required: for example, in real communities energy
consumed by a warm-blooded animal in order to main-
tain body temperature will not be passed on to predators.
During this period all species with less than one unit of
resource are eliminated (rendered extinct).

3. The period in regime 2 is simply a time step in
evolutionary time, and so after the system has reached a
steady state as described above, a speciation event takes
place where a new child species is created by taking one
of the existing species at random and changing one of its
randomly chosen features to another feature. The child
species is then introduced into the ecosystem with its par-
ent and the whole process repeated.

At this stage we should stress again that the topol-
ogy of the web — the nature of the new species which
are successfully introduced and those which are removed
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due to their failure to sustain more than one individual
in the system — depends crucially on the nature of the
population dynamics which is adopted. In our view it is
not correct to postulate a particular web topology and
introduce a dynamical system on this structure. A feed-
back mechanism between the processes of web construc-
tion/destruction and the dynamics on the web is an im-
portant part of the modelling process.

Most of the discussion in the literature on the formula-
tion of equations which describes the population dynamics
of a set of species concerns two, or possibly three species.
There is very little discussion which is concerned with pop-
ulation dynamics equations which might describe a com-
munity of an arbitrary number of species, still less equa-
tions which allow for changes in foraging strategy which
change according to the fortunes of the different species.
Since the nature of the population dynamics is central to
the structure of the food web produced, as well as to the
determination of the populations of the species in the com-
munity, we have devoted a considerable amount of time
to the development of the appropriate form of population
dynamics equations.

We began with a general balance equation for the pop-
ulation number of species i, denoted by Ni, which is at
least standard for two species [1,14]:

dNi(t)
dt

= λ
∑

j

Ni(t)gij(t)−
∑

j

Nj(t)gji(t)−diNi(t). (2)

Here gij(t) is the functional response, that is, the rate at
which an individual of species i feeds on species j. It de-
pends on the population sizes, and its analytical form will
be specified below. The first term on the right-hand side
represents the growth in numbers of species i due to pre-
dation on other species j, the second term the decrease in
numbers due to predation by other species j, and the last
term is the death rate of individuals of species i, in the ab-
sence of interactions with other species. Where there is no
predator-prey relationship between species i and species j,
gij is zero. There are two minor variants on (2): the basal
species may be treated differently from the other species,
and given a positive growth term to represent feeding off
the environment, or the environment may be included as
a “species 0” and these growth terms represented by func-
tional responses gi0. Here we use the second variant, since
we do not wish treat basal species differently from other
species.

Apart from the constant death rates, di, and the eco-
logical efficiency, λ, the model is completely specified once
the functional responses have been chosen. Let us recall
some of the more well-known forms that have been pro-
posed for the case of one predator and one prey — denoted
here as P for predator and V for victim. The earliest,
and simplest, assumption is that the functional response
is linearly dependent on the number of prey available:
g(P, V ) = aV . That is, the consumption of a predator goes
up linearly with the density of prey in the system. This is
the assumption behind, for example, Lotka-Volterra mod-
els. However, it is clearly incorrect for large V ; the preda-
tor needs time to “handle” the prey (capture, consume, ...)

and this will reduce the rate of consumption when prey
are abundant. Allowing for these large V corrections [15]
leads to the Holling form for the functional response:
g(P, V ) = a1V/[1 + a2V ]. Further corrections may be in-
troduced due to competition between predators for prey:
g(P, V ) = a1/[1+a2V +a3P ] — the Beddington form [16].
In recent years there has been a reaction against the
modelling of predator-prey interactions in terms of simple
predator-prey collisions — the “mass-action” approach —
and a move towards a modelling of predator-prey interac-
tions on a longer time scale. One of the consequences of
this reassessment of the basis on which the functional re-
sponse is modelled is the suggestion that g(P, V ) should
take the form g(V, P ) = a1V/[a2V + a3P ]. This is the so-
called ratio-dependent functional response [17]. This may
seem to be a very slight modification of the Beddington
form, but its introduction has caused some discussion [18].
We have chosen a special form of the ratio-dependent func-
tional response (by taking a3 = a1), but this was more
reduce the number of parameters in the model, rather
than anything else. We have just completed a study of the
model using the other forms of functional response men-
tioned above (as well as others) [19]. However, our aim
here is to describe the essentials of the model, and so go-
ing back to our previous notation — for a single predator i
feeding on a single prey j — we choose

gij(t) =
SijNj(t)

bNj(t) + SijNi(t)
. (3)

This form of the functional response is fine if there
is just one predator and one prey species, but what hap-
pens if there are other species preying on j as well? Let
us denote the predator species by k. Then we might ex-
pect that in addition to the term a3P in the denominator
of the Beddington and ratio-dependence response, there
would be terms representing competition from all individ-
uals which are predators of j: SijNi(t) in (3) would be
replaced by

∑
k SkjNk(t), where the sum includes a term

k = i. This is the form we adopted, except that we include
an extra competition term in the interaction. The reason
for this is that we wish to build in the fact that species
which are similar to each other will be in much stronger
competition with each other than those which have noth-
ing in common. We therefore define

αki = c + (1 − c)qki (0 ≤ c ≤ 1), (4)

where qki is the overlap between the two species k and i,
defined as the fraction of features which they have in
common. Thus if the species are identical, k = i, αii =
c+(1−c) = 1. If they have no features in common αki = c.
The competition c is one of the parameters of the model.
These considerations lead to a functional response of the
form

gij(t) =
SijNj(t)

bNj(t) +
∑

k αkiSkjNk(t)
. (5)

Finally, what happens if a particular species i has sev-
eral prey j? It is at this point that we introduce adaptive
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Fig. 2. Number of species as a function of time for two different sets of random numbers.

foraging: one might expect that predators assign more ef-
fort to those prey from which they obtain more food per
unit effort, so that a stationary point is reached only when
a predator obtains the same amount of food per unit effort
from each prey. We would therefore expect that

fij = Agij , (6)

for all j with i fixed. Here A is a constant, which can be
determined using

∑
j fij = 1. This yields

fij(t) =
gij(t)∑
k gik(t)

. (7)

This condition is such that no individual can increase its
energy intake by putting more effort into a different prey,
and is an evolutionarily stable strategy [7]. Putting the
efforts into the functional response (5) we obtain

gij(t) =
Sijfij(t)Nj(t)

bNj(t) +
∑

k αkiSkjfkj(t)Nk(t)
. (8)

The fij are obtained from by solving (7) and (8) self-
consistently.

This summarises the model. In the next section we
shall briefly describe how the simulations were carried out,
and then indicate the nature of the webs obtained from
these simulations.

4 Results

Many simulations of the model have now been performed.
Each one had (a) different random matrices for the scores
of features against each other, and (b) different ran-
dom feature sets for the environment. Each run was
for 100,000 evolutionary time steps, except when very
large webs were created, when the model was run for
200,000 time steps. The main parameters of the model
are: R (total resources), c (the competition parameter,
0 ≤ c ≤ 1), λ (the ecological efficiency which we took to
be equal to 0.1) and b (the saturation level of the func-
tional response).

In addition to exploring the space of these parameters
to see how the structure of the webs changed, it was neces-
sary to collect data from many different webs constructed
with the same set of parameter values and to average over
the results. While simulations with the same set of pa-
rameter values, but different random numbers, give rise
to similar webs, different realisations will still be notice-
ably different, as illustrated in Figure 2.

In simulations of the model, the population sizes with
a fixed number of species quickly reach a fixed point of
the population dynamics. Large food webs can be built
that consist of several hundreds of species. Their size
varies with the parameters of the model, principally R,
the amount of resources available, as shown in Figure 3.
No stable species configuration is reached, but instead a
dynamic equilibrium consisting of ongoing species creation
and extinction is eventually established. No more than a
few species become extinct at the same time, and the size
distribution of extinction events has a sharp exponential
cutoff. The evolutionary dynamics of the model, combined
with the population dynamics, thus create large stable
webs, which have ongoing changes due to species overturn,
but do not show strong responses to small perturbations.

The results from the model are not far from the val-
ues observed in real food webs in most cases. It would be
possible to choose parameters so that the results match
a particular set of real food webs far more closely, how-
ever, given the uncertainties in present food web data we
have not tried to do this. In fact, since the model seems to
capture the essential features of real food webs, it might
be useful in the investigation of several controversies con-
cerning real food webs. Here we will simply give a flavour
of some of the results which we have obtained; we refer
the reader to the original papers for more details. In Ta-
bles 1 and 2 results are shown for a range of values of the
parameters. Apart from the number of links per species,
which seems a little low compared to most empirical data,
these values are those commonly found in real webs.

Two examples of webs that have been constructed
using the model are shown in Figures 4 and 5. We
have chosen to show rather small webs for the sake of
clarity. The radius of the open circles in Figures 4 and 5
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Fig. 3. The effect of resources (R) on the mean web size (S).

Table 1. Results of simulations of the model with c = 0.5 and
b = 5 × 10−3 for three values of the resource R.

c = 0.5 b = 0.005 λ = 0.1

R = 104 R = 105 R = 105.54

no. species 33 57 82

links per species 1.76 1.91 1.91

average level 1.95 2.35 2.65

av. max level 3.0 3.9 4.0

B species (%) 18 9 5

I species (%) 80 89 89

T species (%) 2 2 6

Table 2. Results of simulations of the model with R = 105

and b = 5 × 10−3 for three values of the competition c.

R = 105 b = 0.005 λ = 0.1

c = 0.8 c = 0.6 c = 0.4

no. species 27 55 79

links per species 1.68 1.70 2.33

average level 2.15 2.28 2.38

av. max level 4.0 3.91 3.69

B species (%) 12 9 8

I species (%) 86 90 90

T species (%) 2 1 2

are proportional to the logarithm of population sizes of the
species in the system. The thickness of the links represent
the fraction of the effort that the predator is putting into
preying on the species it is linked to. Weak links are not
shown.

The order in which a particular web is constructed can
be illustrated by looking at the time evolution of a single
ecosystem. An example is shown in Figure 6, where dashed

Fig. 4. A typical web generated from the model. This is a
snapshot of the structure of a mature web, where originations
and extinctions balance on average.

Fig. 5. A typical web generated from the model. The positions
of species in the webs are not preassigned: they emerge from
the dynamics of the model.

lines occur at times 100, 500, 1000 and 10000. If the food
web is sampled at these times the structures shown in
Figure 7 are found.
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Fig. 6. The time evolution of a single system with R = 105, b = 0.005 and c = 0.5. The dashed lines represent the times at
which the food web was sampled to produce the partially constructed webs shown in Figure 7.

Fig. 7. Food webs produced in the simulation shown in Figure 6, sampled at times 100, 500, 1000 and 10000.
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5 Discussion

In this article we have reviewed a model which allows food
webs to be constructed dynamically. The model is rela-
tively rich, yet we would contend that it contains only
those elements which are believed to be important and
relevant in determining the structure of food webs. Of
course, one of the strengths of the modelling procedure is
that the assertion that a particular element is important
or not can be tested. In order to be able to “grow” a food
web we need to recognise that there are two types of dy-
namics. The first type gives rise to new species in the web
(by speciation) and eliminates them from the web (extinc-
tion). The second type is conventional population dynam-
ics, which describes the interaction between individuals
when the number of species present in the community is
fixed. One of the key points on which the model is based
is the fact that these two types of dynamics are coupled:
population dynamics should not be defined on a static
web — the web itself changes in response to the growth or
decline of species numbers, which are determined by the
population dynamics.

There are three time scales in the model. On the
longest time scale, new species are introduced. They are
variants of randomly chosen species already in the system.
On the intermediate time scale, the number of species is
fixed, and the dynamics is that of conventional popula-
tion dynamics. On the shortest time scale, the populations
of each species are fixed, but the foraging strategies may
change, so that species may alter their feeding habits to
take advantage of recent changes in population sizes. Al-
though the model covers a very large range of time scales,
the results it produces are intuitively appealing and in
broad agreement with food web data from real ecosys-
tems.

There are very few similar studies to which our work
can be compared. About a decade ago there were a number
of evolutionary toy models which were introduced, largely
by theoretical physicists (see for example [20], or [21] for
a review). However, the purpose of these models was not
so much to reproduce realistic web structures, as to study
the large-scale dynamics of species extinctions. We would
expect that the extreme simplicity of these models, lack-
ing as they do important ingredients that are present in
real ecosystems, would give results which are not reliable.
Mention should also be made of a model of interacting
molecular species which has a population dynamics de-
fined on a network which evolves topologically [22]. The-
oretical ecologists have also studied assembly models [23],
which are capable of generating intermediate-size webs
with a predetermined number of trophic layers. However
there are several drawbacks to these models, not least
is the fact that species are drawn from a species pool
which consist of species which have not co-evolved and
are given a pre-determined role in the web. Perhaps the
model which is closest to ours is a model which uses Lotka-
Volterra dynamics [24]. However, computer simulations of
this model [25] seem to indicate that only one tropic layer
of species eventually survives.

Although the model is producing satisfactory results,
we are continually looking for modifications and elabora-
tions which can improve it. For example, in the original
paper describing the approach [6], the population dynam-
ics was rather simple. One consequence was that it became
progressively more and more difficult for new species to
enter the system and survive, so that eventually a final
state was reached which no species could invade. The sec-
ond version of the model [7], which is the one that has
been reviewed here, has a much more realistic population
dynamics and instead predicts a state of dynamic equi-
librium with a continuous overturn of species with origi-
nations and extinctions balancing on average. Thus while
the structure of the mature web may not appear to change
too much over very long time scales most, if not all, of the
species will have become extinct and been replaced by
other similar ones. Presently we are modifying the nature
of some of the specific assumptions which lie at the heart
of the model. We believe that the essential predictions of
the model will not be altered by changing these details. In
other words, we believe that the model is robust, and the
essential nature of the predictions will not be changed by
perturbations of the specifics of the model.

The other papers in this volume show the great interest
which is being shown in the study of networks and their
properties. We hope that researchers in the general theory
of networks will benefit from a study of the approach we
have adopted in the modelling of food webs and that it
will also contribute to the generalisation and elucidation
of the theory of food webs.

I would like to thank Chris Quince for providing many of the
figures used in this paper.
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